Simultaneous EEG-MEG Sleep Recording and Source Localization Reveal Precise Spatiotemporal Distribution of Spindle Activity During Sleep

Pin-Chun Chen & Bernhard Staresina Department of Experimental Psychology Wellcome Centre for Integrative Neuroimaging, University of Oxford

Skłodowska-Curie

Actions

- Spindles (12-16 Hz) are waxing-and-waning oscillations during NREM sleep, generated and sustained through thalamocortical interactions¹.
- Spindles are thought to support sleep-dependent memory consolidation via setting a timeframe for ripples to occur², which coordinate neuronal firing rates and drive memory reactivation.
- While intracranial EEG studies revealed spindle-ripple interactions², corresponding whole-brain dynamics remain unclear to limited coverage.
- MEG offers better spatial resolution than EEG and has been widely used to capture high-frequency activity, allowing for more precise mapping of spindle and ripple dynamics.

Question

Can MEG track the whole-brain spatiotemporal distribution of spindles and characterise hippocampal ripples?

Methods

- Eleven healthy participants (6 male; age: 26.4 ± 6.3 years) slept in the MEG scanner from 11:30pm to 2am, and then slept in the adjacent bedroom with EEG until 8am, followed by a structural MRI scan.
- Data were sampled at 1000Hz using a MEGIN Triux™ Neo system with 306 MEG and 60 EEG channels.
- Spindle detection was performed on EEG Cz, based on prior iEEG and EEG studies from our group³.
- Surrogate spindles from NREM windows without spindle events were used as a baseline.
- FLUX Toolkit was used for preprocessing: MaxFilter, Artifact detection, ICA, and Epoching.
- LCMV Beamformer was used for time-domain source localisation via FieldTrip in MATLAB.
- Spectral decomposition of spindle activity was performed at the source level.
- Hippocampal Regions of Interest (ROIs) were defined using the FieldTrip AAL atlas.

Conclusions - Source localisation revealed that spindles originate in the precuneus, parietal cortex, and thalamus, spreading to the temporal, orbitofrontal, and anterior cingulate cortices.

- We explored the feasibility of using source localisation to capture hippocampal ripples during spindles, but results remain inconclusive.

References

Andrillon, T., Nir, Y., Staba, R. J., Ferrarelli, F., Cirelli, C., Tononi, G., & Fried, I. (2011). Journal of Neuroscience, 31(49), 17821-17834.
Staresina, B. P., Bergmann, T. O., Bonnefond, M., Van Der Meij, R., Jensen, O., Deuker, L., ... & Fell, J. (2015) Nature neuroscience 18.11: 1679-1686
Ngo HV, Fell J, Staresina B. (2020) eLife. 9:e57011. doi:10.7554/eLife.57011.